
A CONDITION FOR UNIVALENCE IN THE POLYDISC

MARTIN CHUAQUI AND RODRIGO HERNÁNDEZ

Abstract. We study a sufficient condition for univalence in the polydisk in
terms of the size of the norm of the Schwarzian operator. Examples show that
our result is close to optimal in dimension two. This paper extends work by the
second author concerning similar criteria in the ball.

1. Introduction

The Schwarzian derivative

Sf =

(
f ′′

f ′

)′
− 1

2

(
f ′′

f ′

)2

of a locally injective analytic map f has been studied extensively in one complex
variable, especially in connection with necessary and sufficient conditions for univa-
lence on domains. It is invariant under compostions T ◦f with Möbius transforma-
tions T , which are the only mappings that have Schwarzian vanishing everywhere.
The associated linear equation u′′ + 1

2
(Sf)u = 0 plays an important role since f is

univalent in a simply-connected domain Ω if and only if every non-trivial solution
u of the linear equation vanishes in Ω at most once. This is a consequence of the
fact that any mapping f with Sf = 2p is given as f = u1/u2 for two linearly
independent solutions of u + pu = 0. Under suitable bounds for |Sf |, variants
of Sturm comparison techniques allow then to preclude multiple zeros of u. We
cite the pioneer work of Nehari [5], who among other criteria proved that if f is
analytic, locally univalent in D = {z : |z| < 1} and

(1− |z|2)2|Sf(z)| ≤ 2 ,

then f is univalent. This important class of univalent mappings contains, for
example, all convex functions (see [6]). In 1972, J. Becker gave a criterion using
the pre-Schwarzian f ′′/f ′, namely that

(1− |z|2)
∣∣∣∣z

f ′′

f ′
(z)

∣∣∣∣ ≤ 1
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implies that f is univalent and Ω = f(D) a Jordan domain, [1]. The constants 2
and 1 in both results are sharp.

The purpose of this paper is to study a similar sufficient condition for the univa-
lence of a locally biholomorphic mapping defined in the polydisk. We will employ
a generalization of the Schwarzian derivative developed in [2] and based on work
by T.Oda in [7]. In several variables there is a family of Schwarzian derivatives
Sk

ijF associated with a single mapping F , which can be used to define a Schwarzian
operator SF that inherits a norm ||SF || from any hermitian norm defined on the
domain. Our result, close to optimal in dimension n = 2 and less so in higher
dimensions, constitutes a complement of the work in [3], where the second au-
thor establishes sufficient conditions for univalence in the ball in terms of suitable
bounds for the norm ||SF || relative to the Bergman metric. This paper represents
a step toward generalizing the classical theme of univalence criteria to several vari-
ables, and highlights, in yet another way, differences between the ball and the
polidisk.

2. The Schwarzian

Let F : Ω ⊂ Cn → Cn be a locally biholomorphic mapping defined on some do-
main Ω. T.Oda in [7] defined a family of Schwarzian derivatives of F = (f1, . . . , fn)
as

(2.1) Sk
ijF =

n∑

l=1

∂2fl

∂zi∂zj

∂zk

∂fl

− 1

n + 1

(
δk
i

∂

∂zj

+ δk
j

∂

∂zi

)
log ∆ ,

where i, j, k = 1, 2, . . . , n, ∆ = det(DF ) is the jacobian determinant of the diferen-
tial DF and δk

i are the Kronecker symbols. For n > 1 the Schwarzian derivatives
have the following properties:

(2.2) Sk
ijF = 0 for all i, j, k = 1, 2, . . . , n iff F (z) = M(z) ,

for some Möbius transformation

M(z) =

(
l1(z)

l0(z)
, . . . ,

ln(z)

l0(z)

)
,

where li(z) = ai0 + ai1z1 + · · · + ainzn with det(aij) 6= 0. Furthermore, for a
composition

(2.3) Sk
ij(G ◦ F )(z) = Sk

ijF (z) +
n∑

l,m,r=1

Sr
lmG(w)

∂wl

∂zi

∂wm

∂zj

∂zk

∂wr

, w = F (z) .



A CONDITION FOR UNIVALENCE IN THE POLYDISC 3

Thus, if G is a Möbius transformation then Sk
ij(G◦F ) = Sk

ijF. The S0
ijF coefficients

are given by

S0
ijF (z) = ∆1/(n+1)

(
∂2

∂zi∂zj

∆−1/(n+1) −
n∑

k=1

∂

∂zk

∆−1/(n+1)Sk
ijF (z)

)
.

In his work, Oda gives a description of the functions with prescribed Schwarzian
derivatives Sk

ijF ([7]). Consider the following overdetermined system of partial
differential equations,

(2.4)
∂2u

∂zi∂zj

=
n∑

k=1

P k
ij(z)

∂u

∂zk

+ P 0
ij(z)u , i, j = 1, 2, . . . , n ,

where z = (z1, z2, ..., zn) ∈ Ω and P k
ij(z) are holomorphic functions in Ω, for

i, j, k = 0, . . . , n. The system (2.4) is called completely integrable if there are
n + 1 (maximun) linearly independent solutions, and is said to be in canonical
form (see [8]) if the coefficients satisfy

n∑
j=1

P j
ij(z) = 0 , i = 1, 2, . . . , n.

T. Oda proved that (2.4) is a completely integrable system in canonical form if and
only if P k

ij = Sk
ijF for a locally boholomorphic mapping F = (f1, . . . , fn), where

fi = ui/u0 for 1 ≤ i ≤ n and u0, u1, . . . , un is a set of linearly independent solutions

of the system. For a given mapping F , u0 = (∆)−
1

n+1 is always a solution of (2.4)
with P k

ij = Sk
ijF .

We recall the following definitions from [2], where the individual Schwarzians
Sk

ijF are grouped adequately as an operator.

Definition 2.1. For each k = 1, . . . , n we let SkF be the n× n matrix

SkF = (Sk
ijF ) , i, j = 1, . . . , n .

Definition 2.2. We define the Schwarzian derivative operator as the mapping
SF (z) : TzΩ → TF (z)Ω given by

SF (z)(~v) =
(
~v tS1F (z)~v , ~v tS2F (z)~v , . . . , ~v tSnF (z)~v

)
,

where ~v ∈ TzΩ.

The Bergman metric on the polydisk Pn is the hermitian product defined by the
diagonal matrix

(2.5) gii(z) =
2

(1− |zi|2)2
,
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see, e.g., [4]. Is well known that the automorphisms group of the polydisc, up
to multiplication by a diagonal unitary transformation and a permutation of the
coordinates, consists of mappings

ψ(z) = ψa(z) = (ψa1(z1), . . . , ψan(zn)) , z = (z1, . . . , zn) ∈ Pn ,

where a = (a1, . . . , an) ∈ Pn and ψaj
(zj) =

zj − aj

1− ājzj

, 1 ≤ j ≤ n . The polydisc is

a homogeneous domain, however the action of this group is not transitive on the
set of directions at a given point. We define the norm of the Schwarzian derivative
operator by

‖SF (z)‖ = sup
‖~v‖=1

‖SF (z)(~v )‖ ,

where

‖~v ‖ =

[
2

n∑
i=1

|vi|2
(1− |zi|2)2

]1/2

is the Bergman norm of ~v ∈ TzPn. Finally, we let

||SF || = sup
z∈Pn

||SF (z)|| .

Because the automorphisms M of the ball Bn are Bergman isometries as well
as Möbius, the corresponding norm ||SF || remains invariant under composition
F ◦ M . Therefore, the class of mappings F : Bn → Cn for which ‖SF‖ ≤ α
is a linearly invariant family, and also normal after normalization (see [2]). The
corresponding family in Pn fails to be linearly invariant.

3. Preliminary Lemmas

The following lemma is crucial in our work.

Lemma 3.1. Let F : Pn → Cn be a locally univalent function with ‖SF‖ ≤ α < ∞,
then

|Sk
ijF (z)| ≤

√
2 α (1− |zk|2)

(1− |zi|2)(1− |zj|2) .

Proof. Let ~ei = (0, . . . , 1, . . . , 0) be the canonical vector in the i-th direction, and
consider the unitary vector in the Bergman metric given by ~ui = 1√

2
(1 − |zi|2) ~ei.

Then

‖(~uj)
t SF (z) ~ui‖2 =

1

2

n∑

k=1

∣∣Sk
ijF (z)

∣∣2 (1− |zi|2)2(1− |zj|2)2

(1− |zk|2)2
≤ α2 ,

hence
|Sk

ijF (z)|2 ≤ 2α2(1− |zk|2)2(1− |zi|2)−2(1− |zj|2)−2 ,

as claimed. ¤



A CONDITION FOR UNIVALENCE IN THE POLYDISC 5

It follows from the lemma that, for k 6= i, j, |Sk
ijF (z)| → 0 when |zk| → 1, and

therefore by the maximum principle,

(3.1) Sk
ijF (z) ≡ 0 , k 6= i, j .

The vanishing of these Schwarzians for mappings with bounded ||SF || is charac-
teristic of the polydisk and does not occur in the ball.

Lemma 3.2. Let F = (f1, . . . , fn) : Pn → Cn satisfy ||SF || ≤ α, and suppose that
F (ξ) = 0 and DF (ξ) = I at some ξ = (ξ1, . . . , ξn) ∈ Pn. Then for each i, the
component fi has a representation of the form

(3.2) fi(z) =
∞∑

n=1

ain(z1, . . . , zi−1, zi+1, . . . , zn)(zi − ξi)
n ,

where ain is a holomorphic function independent of the variable zi.

Proof. Let u0 = ∆− 1
n+1 . Then fiu0 = ui where u0, u1, . . . , un is a set of linearly

independent solutions of (2.4) with P k
ij = Sk

ijF . Differentiating fiu0 = ui with
respect to zj and zk gives

∂2fi

∂zj∂zk

u0 +
∂fi

∂zj

∂u0

∂zk

+
∂fi

∂zk

∂u0

∂zj

+ fi
∂2u0

∂zj∂zk

=
∂2ui

∂zj∂zk

.

Because Sk
ijF ≡ 0 for each k 6= i, j, it follows from (2.4) that

(3.3)
∂2fi

∂zj∂zk

u0 +
∂fi

∂zj

∂u0

∂zk

+
∂fi

∂zk

∂u0

∂zj

= Sj
jkF

∂fi

∂zj

u0 + Sk
jkF

∂fi

∂zk

u0 .

By evaluating at z = ξ, we conclude that for i 6= j, k

(3.4)
∂2fi

∂zj∂zk

(ξ) = 0 .

Moreover, from differentiating (3.3) with respect to zl with i 6= l, we conclude after
evaluating at z = ξ that

(3.5)
∂3fi

∂zj∂zk∂zl

(ξ) = 0 .

This procedure can be repeated to obtain for i 6= k1, . . . , km

∂mfi

∂zk1 · · · ∂zkm

(ξ) = 0 .

It follows that the Taylor series of fi has the form

(3.6) fi(z) =
∞∑

n=1

ain(z1, . . . , zi−1, zi+1, . . . , zn)(zi − ξi)
n ,

where ain are holomorphic functions for each n.
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¤

The lemma implies that fi(z1, . . . , zi−1, ξi, zi+1, . . . , zn) = 0 for each i = 1, . . . , n.

Lemma 3.3. Let F = (f1, . . . , fn) : Pn → Cn satisfy ||SF || ≤ α, and suppose that
F (ξ) = 0 and DF (ξ) = I at some ξ = (ξ1, . . . , ξn) ∈ Pn. Then ∂fi/∂zi 6= 0 in Pn.

Proof. To simplify notation, we will assume that ξ = (0, . . . , 0) even though the
argument is valid for arbitrary ξ. We argue by contradiction, and assume that
for some i the partial derivative ∂fi/∂zi = 0 at some point in Pn. Without
loss of generality, we make take i = 1, that is, that ∂f1/∂z1(a) = 0 at some
a = (a1, . . . , an) ∈ Pn. We will show that ∂f1/∂zi(0, a2, . . . , an) = 0 for all
i = 1, 2, . . . , n, leading to a contradiction with the fact that ∆ 6= 0 in Pn. Equation
(3.6) shows that

f1(0, z2, . . . , zn) ≡ 0 ,

hence
∂f1

∂zi

(0, a2, . . . , an) = 0 , i = 2, . . . , n .

Because ∆(a) 6= 0 there exists i ∈ { 2, . . . , n} such that (∂f1/∂zi)(a) 6= 0, say
i = 2. The mapping

G = (g1, g2, . . . , gn) = (f2, f1, f3, . . . , fn)

is a locally biholomorphic mapping in Pn with SG = SF . Its second component
g2 satisfies g2(a) = (∂g2/∂z1)(a) = 0. It follows now from (3.3) and successive
derivatives with respect to z1 that

∂mg2

∂zm
1

(a) = 0 , m ≥ 2 .

From the Taylor expansion of ∂g2/∂z1 at z = a in the variable z1 we conclude that
(∂g2/∂z1)(z1, a2, . . . , an) ≡ 0, and in particular, that 0 = (∂g2/∂z1)(0, a2, . . . , an) =
(∂f1/∂z1)(0, a2, . . . , an). This finishes the proof.

¤

Before embarking into the analysis of univalence, we establish a final lemma in
this section.

Lemma 3.4. Let F = (f1, . . . , fn) : Pn → Cn satisfy ||SF || ≤ α, and suppose that
F (ξ) = 0 and DF (ξ) = I at some ξ = (ξ1, . . . , ξn) ∈ Pn. Then for each i, j there
exist holomorphic function λij, µij with the properties

(i) fi = λijfj + µij ,

(ii) ∂λij/∂zj = ∂µij/∂zj ≡ 0 .
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Proof. In differentiating fiu0 = ui we have that

∂2fi

∂z2
j

u0 + 2
∂fi

∂zj

∂u0

∂zj

= Sj
jjF

∂fi

∂zj

u0 ,

thus
∂2fi

∂z2
j

=
∂fi

∂zj

(
Sj

jjF − 2
∂ log(u0)

∂zj

)
,

By taking j = i we obtain

∂2fj

∂z2
j

=
∂fj

∂zj

(
Sj

jjF − 2
∂ log(u0)

∂zj

)
,

and after dividing the last equation by ∂fj/∂zj, we obtain

∂2fj/∂z2
j

∂fj/∂zj

= Sj
jjF − 2

∂ log(u0)

∂zj

.

Thus, for each i and j we have

(3.7)
∂2fi

∂z2
j

∂fj

∂zj

=
∂2fj

∂z2
j

∂fi

∂zj

.

From this,

(3.8)
∂

∂zj

(
∂fi/∂zj

∂fj/∂zj

)
≡ 0 ,

hence there exist holomorphic functions λij, µij independent of the variable zj such
that

(3.9) fi = λijfj + µij .

¤

4. A Univalence Criterion

Our main result is

Theorem 4.1. Let F : Pn → Cn, n ≥ 2, be a locally biholomorphic mapping such
that

||SF || ≤ 1

3
√

2
.

Then F is univalent in Pn.

Proof. Suppose F is not univalent. Then F (ξ) = F (ζ) for points ξ 6= ζ in Pn.
Hence ξi 6= ζi for some i, say for i = 1. Since an affine change leaves the Schwarzian
invariant, we may assume that F (ξ) = (0, . . . , 0) and that DF (ξ) = I. Then for
i 6= n we have

(4.1) fi = λinfn + µin ,
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where λin, µin are independent of the variable zn. Therefore

∂fi

∂zn

(z) = λin(ẑn)
∂fn

∂zn

(z) , i = 1, . . . , n− 1 ,

where ẑn represents the point (z1, . . . , zn−1). By evaluating z = ξ we obtain that

λj(ξ̂n) = 0 . In addition, fi(ξ) = fi(w) = 0 implies that µin(ξ̂n) = µin(ζ̂n) = 0, and
using (3.6) we have that

(4.2) fi(ξ1, . . . , ξn) = fi(ζ1, . . . , ζn−1, ξn) = 0 , i = 1, . . . , n− 1 .

We repeat this process and write

(4.3) fi(z1, . . . , zn−1, ξn) = λi(n−1)(z1, . . . , zn−2, ξn)fn−1(z1, . . . , zn−1, ξn) +

µi(n−1)(z1, . . . , zn−2, ξn) ,

and find in analogous form that

fi(ξ1, . . . , ξn) = fi(ζ1, . . . , ζn−2, ξn−1, ξn) = 0 , i = 1, . . . , n− 2 .

By iterating we finally obtain that the analytic function

(4.4) f(w) = f1(w, ξ2, . . . , ξn) , z ∈ D ,

has f(ξ1) = f(ζ1) = 0. Because of Lemma 3.3, this function is locally injective.

In order to obtain information about this function we will consider the Schwarzians

(4.5) S1
11F =

1

∆

n∑

k=1

∂2fk

∂z2
1

(−1)k+1Ak1 − 2

n + 1

∂

∂z1

log (∆) ,

and

(4.6) S2
12F =

1

∆

n∑

k=1

∂2fk

∂z1∂z2

(−1)kAk2 − 1

n + 1

∂

∂z1

log (∆) ,

where Akj is the determinant of differential DF resulting from eliminating of col-
umn j and row k. Because of the representation (3.5) we have that at points of
the form z = (w, ξ2, . . . , ξn), the differential DF is diagonal, hence Akj 6= 0 only
when k = j. Therefore, at such points,

(4.7) S1
11F − 2S2

12F =
1

∆

(
∂2f1

∂z2
1

A11 − 2
∂2f2

∂z1∂z2

A22

)
.

Suppose for a moment that
∂2f2

∂z1∂z2

(ξ) = 0 .

It follows from equation (3.5) that for m ≥ 2

(4.8)
∂mf2

∂zm−1
1 ∂z2

(ξ) = 0 ,
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which implies that

∂2f2

∂z1∂z2

(w, ξ2, . . . , ξn) ≡ 0 .

Hence, at z = (w, ξ2, . . . , ξn) we have that

S1
11F − 2S2

12F =
f ′′

f ′
(w) ,

and we obtain from Lemma 3.1 that
∣∣∣∣
f ′′

f ′

∣∣∣∣ ≤ |S1
11|+ 2|S2

12| ≤
1

1− |w|2 .

The Becker criterion implies that f = f(w) is injective, leading to a contradiction.

In general, when
∂2f2

∂z1∂z2

(ξ) 6= 0 we consider a Möbius transformation

G = (g1, . . . , gn) = T ◦ F =

(
f1

1 + af1

,
f2

1 + af1

, . . . ,
fn

1 + af1

)
,

for an appropriate value of a that makes

∂2g2

∂z1∂z2

(ξ) = 0 .

Using that F (ξ) = (0, . . . , 0), DF (ξ) = I, a simple calculation shows that

a =
∂2f2

∂z1∂z2

(ξ) .

The mapping G = (g1, . . . , gn) has Sk
ijG = Sk

ijF for all i, j, k but becomes singular in
Pn at points where af1 = −1. Nevertheless, G is regular and locally biholomorphic
in a subpolydisk Pn

ξ (r) = {z ∈ Cn : |zi − ξi| < r} becuase f1(ξ) = 0. Note that
G(ξ) = (0, . . . , 0) and DG(ξ) = I. The proof of Lemmas 3.2, 3.3 and 3.4 show
they remain valid for the mapping G in Pn

ξ (r). Equation (4.8) holds now for g2,
which implies that the function

∂2f2

∂z1∂z2

(w, ξ2, . . . , ξn)

is holomorphic and identically zero for all |w| < 1. Because S1
11F − 2S2

12F =
S1

11G−2S2
12G, we conclude from (4.7) that g′′1/g

′
1 remains holomorphic for all |w| < |

and that g1 satisfies the Becker univalence condition. Hence f1 = g1/(1 − ag1) is
again injective, a contradiction. This finishes the proof.

¤
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5. Examples

We present in this section several examples in all dimensions; for n = 2 our main
result is close to optimal.

Example 1: Let F (z, w) = (f(z), w) be a locally univalent mapping defined in
P2. A direct computation gives

S1F =
1

3

( −f ′′/f ′ 0
0 0

)
, S2F =

1

3

(
0 f ′′/f ′

f ′′/f ′ 0

)
.

From this it follows that

SF (z, w)(~v,~v) =

(
−1

3

f ′′

f ′
v2

1 ,
2

3

f ′′

f ′
v1v2

)
,

where ~v = (v1, v2) is a unitary vector in the Bergman norm, that is

‖~v‖2 = 2

( |v1|2
(1− |z|2)2

+
|v2|2

(1− |w|2)2

)
= 1 .

Then

‖SF (z, w)(~v,~v)‖2 =
2

9

∣∣∣∣
f ′′

f ′
(z)

∣∣∣∣
2

|v1|2
( |v1|2

(1− |z|2)2
+ 4

|v2|2
(1− |w|2)2

)
,

a quantity that is maximized under the restriction on the norm of ~v when

|v1|2
(1− |z|2)2

=
1

3
,

|v2|2
(1− |w|2)2

=
1

6
.

With this

‖SF (z, w)| =
√

2

3
√

3

∣∣∣∣
f ′′

f ′
(z)

∣∣∣∣ (1− |z|2) ,

so that

||SF || =
√

2

3
√

3
sup
|z|<1

(1− |z|2)
∣∣∣∣
f ′′

f ′
(z)

∣∣∣∣ .

Hence F satisfies hypothesis of Theorem 4.1 precisely when

(1− |z|2)
∣∣∣∣
f ′′

f ′
(z)

∣∣∣∣ ≤
√

3

2
= 0.866 ,

which is close to the optimal bound 1 for the univalence of f given by Becker’s
condition.

There are many univalent functions in the polydisk that have unbounded ||SF ||.
In fact, let F (z, w) the Ropper-Suffridge extension defined by

F (z, w) =
(
f(z),

√
f ′(z) w

)
,
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where f is a univalent in D and the root is defined via branch of log f ′(z) for which
log f ′(0) = 0. Then F is univalent in P2, but a calculation shows that

S1F =

(
0 0
0 0

)
, S2F =

( w

2
Sf(z) 0

0 0

)
,

thus SF (z, w)(~v,~v) =
(
0 ,

w

2
Sf(z)v2

1

)
, and so

‖SF (z, w)‖ =
1

2
√

2

|w||Sf(z)|(1− |z|2)2

(1− |w|2) →∞ ,

when |w| → 1.

Example 2: Let F (z) = (f(z1), z2, . . . , zn), with f ′ 6= 0 in D. Hence ∆ = f ′ 6= 0
in Pn. Then

S 1
11F (z) =

n− 1

n + 1

f ′′

f ′
(z1) ,

and

S i
1iF (z) = − 1

n + 1

f ′′

f ′
(z1) , i = 2, . . . , n .

It is not difficult to see that Sk
ijF ≡ 0 when k 6= i, j. Hence,

SF (z)(~v,~v) =

(
n− 1

n + 1

f ′′

f ′
(z1)v

2
1 , − 2

n + 1

f ′′

f ′
(z1)v1v2 , . . . , − 2

n + 1

f ′′

f ′
(z1)v1vn

)
,

where

‖~v‖2 = 2

( |v1|2
(1− |z1|2)2

+ · · ·+ |vn|2
(1− |zn|2)2

)
= 1 .

It follows that

‖SF (z)(~v,~v)‖2 =
2

(n + 1)2

∣∣∣∣
f ′′

f ′
(z1)

∣∣∣∣
2 (

(n− 1)2 |v1|4
(1− |z1|2)2

+
4|v1v2|2

(1− |z2|2)2
+ · · ·+ 4|v1vn|2

(1− |zn|2)2

)

=
2

(n + 1)2

∣∣∣∣
f ′′

f ′
(z1)

∣∣∣∣
2 (

(n− 1)2 |v1|4
(1− |z1|2)2

+ 2|v1|2 − 4
|v1|4

(1− |z1|2)2

)

=
2

(n + 1)2

∣∣∣∣
f ′′

f ′
(z1)

∣∣∣∣
2 (

(n2 − 2n− 3)
|v1|4

(1− |z1|2)2
+ 2|v1|2

)
.

If n ≥ 3 we have that n2 − 2n− 3 ≥ 0, so that the maximal value of the left hand
side occurs now when v2 = · · · = vn = 0 and 2|v1|2 = (1 − |z1|2)2. We conclude
that

‖SF (z)‖ =
1√
2

(
n− 1

n + 1

)
(1− |z1|2)

∣∣∣∣
f ′′

f ′
(z1)

∣∣∣∣ .
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Thus F will satisfy the criterion in Theorem 4.1 when

(1− |z|2)
∣∣∣∣
f ′′

f ′
(z)

∣∣∣∣ ≤
1

3

(
n + 1

n− 1

)
.
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